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This thesis deals with the speed control methods of electrical drives with
resonant loads such as rolling mill drives with long shafts, robotic arms
with �exible couplings and elevators with �exible ropes. The electrical
drive with a resonant load is modeled as a two-mass resonant system.
Three speed controlling techniques have been designed: a state-space con-
troller, a two-degree-of-freedom (2DOF) controller tuned according to the
rigid system model; and a 2DOF controller tuned according to the �ex-
ible system model. The state-space controller is designed based on the
pole placement technique and with the assumption that all state vari-
ables are available. Both 2DOF methods include PI feedback controllers,
where two di�erent feedforward controllers are considered. The design
principles and analytical tuning methods of the controllers are presented.
Three simulation studies are carried out to test and analyze the reference-
tracking capabilities and sensitivity to disturbances of the designed speed
controllers. Finally, the bene�ts and limitations of the speed controllers
as well as some recommendations for future research areas are presented.
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Abbreviations and symbols

A System matrix
B Input matrix
C Output matrix
CS Shaft damping coe�cient
D Feedthrough matrix
JL Load inertia
JM Motor inertia
KJ Inertia ratio
KR Resonance ratio
KS Shaft sti�ness
s Laplace variable
TL Load torque
TM Motor torque
TS Shaft torque
u Input vector
x State vector
α Angular acceleration
αs Bandwidth of 2DOF rigid system model
ε Di�erence between motor and load angular positions
ζ Damping ratio
θL Load angular position
θM Motor angular position
ωA Anti resonance frequency
ωL Load speed
ωM Motor speed
ωR Resonance frequency
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Acronyms

PI Proportional-integral
PID Proportional-integral-derivative
1DOF one-degree-of-freedom
2DOF Two-degree-of-freedom
MRAC Model reference adaptive control
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Chapter 1

Introduction

1.1 Background

In the modern industrial world, motion control (speed, position) is very im-
portant to enhance productivity, quality and to reduce energy consumption
as well as equipment maintenance. Its application �elds are widely present in
industry such as pick and place tasks and robotic arms. Electrical drives have
a major share in most industrial motion control applications and industrial
robots as these perform the conversion of electrical energy into mechanical
energy or vice versa in various processes. These drives may operate at con-
stant speed or at variable speeds, depending upon the utilizing process, and
are considered crucial components in almost all industrial applications.

A signi�cant improvement has been observed in control technology and strate-
gies of electrical drives during the last two decades. The technological progress
in the industrial world has ampli�ed demand for �exibility and precision as
well as requirement of energy loss minimization due to the global energy
crisis. The ease of controlling the electrical drives is an important factor in
order to meet these requirements. This trend owes its progress to the vari-
ous philosophies and techniques, developed by several researchers around the
world, such as the PID/PI control scheme, the adaptive control scheme, and
the resonant ratio control scheme.

In many industrial and robotics applications, the mechanical parts of drive
systems may have very low resonant frequency, such as rolling mills which
normally comprise of a long shaft and large load-side mass, elevators with
�exible transmission rope or industrial robotic arms having �exible coupling.
A light weight and high load-to-weight ratio construction is required in in-
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dustrial robots for fast motion and high e�ciency in operation. For these
reasons, the dynamics of such systems should be modeled as two-mass or
multi-mass systems. The speed control of such systems has signi�cant in-
terest in the scienti�c community due to their importance in the industrial
world. The main tasks of speed controllers are: tracking of the speed ref-
erence, rejection the e�ect of load torque and suppression of shaft torsional
vibration.

1.2 Scope

Typical industrial motor drive systems may contain several mechanical cou-
plings between a motor and a load. The couplings are not sti�. These
drive systems are increasingly required in industrial automation. However
the structural resonance of the drive system is easily excited by rapid change
in speed. When �exibility is considered, these drive systems can be modeled
as two-mass resonant systems.

A number of strategies have been proposed to design a speed controller for
the two-mass resonant systems. A basic control structure is PI control. Usu-
ally, all state variables are not available as well as it is not easy to achieve
analytical design. Also it is hard to develop a uni�ed method to deal with
various demands. Therefore, it is highly desirable to have an easy-to-tune
controller which has the ability to control a drive system according to the
requirements of the process.

1.3 Objective

The prime objective of this Master's thesis is to design, implement and eval-
uate the performance of a two-degree-of-freedom (2DOF) PI speed controller
for a two-mass resonant system with two di�erent tuning methodologies so
as to meet the requirements for typical industrial motor drive systems. The
parameters of the controller will be tuned by following two di�erent method-
ologies:

• Parameter tuning according to a rigid system model.

• Parameter tuning according to a �exible system model.

This designing evaluation should be done theoretically and through simula-
tion. Since the state-space controller can be considered as the best controller
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if all state variables are available, we will use it as a benchmark. The per-
formance of the 2DOF PI speed controller will be compared with the per-
formance of this controller. Hence, it is also required to design a state-space
controller while assuming that all state variables can be measured and are
available for controller design.

The designed 2DOF PI speed controller must possess the following charac-
teristics:

• Fast tracking of the load speed with respect to the reference speed
without overshoot.

• Reject the e�ect of the load torque.

1.4 Disposition

This Master's thesis consists of �ve chapters. The �rst chapter provides a
brief introduction of the thesis. Chapter 2 introduces the model of a two-
mass resonant system. The prime objective of this thesis begins in Chapter
3 where various related control strategies and techniques proposed in the
scienti�c community are brie�y reviewed. Then, a state-space controller
is designed and �nally two parameter tuning techniques for the 2DOF PI
controller are explained for a two-mass resonant system. Chapter 4 contains
performance comparison of the designed controllers based on the simulation
results. Finally, the thesis is concluded in Chapter 5.
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Chapter 2

Modeling of the two-mass

resonant system

In this chapter, the structure and the model of a two-mass resonant system is
explained. The block diagram of the system is described followed by a brief
review of the open loop frequency response of the system.

2.1 Two-mass resonant system

A simple structure of a two-mass resonant system is shown in Fig. 2.1. The
system comprises of the motor and the load, connected through a �exible
shaft or transmission element. This �exible shaft or transmission element has
non-ideal transmission behavior such as �nite torsional sti�ness. This �nite
sti�ness can cause unwanted torsional oscillations as well as can stress both
the mechanical and electrical components of the system. The mechanical
parts of such systems may have a low resonant frequency so the structural
resonance is easily excited by rapid change is speed.

Consider a two-mass resonant system where JM is motor inertia, JL is load
inertia, ωM is motor speed, ωL is load speed, TM is motor torque, TL is load
torque, TS is shaft torque, KS is shaft sti�ness, CS is the shaft damping
coe�cient, θM is motor angular position and θL is load angular position.
(Leonhard, 1996), (Shahgholian et al., 2009b)

The equation representing the motor dynamics is

JM
d

dt
ωM = TM − TS. (2.1)

4
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Motor Load

ωM ωL

TLTM

JL

TS TS

KS CS

JM

Figure 2.1: Two-mass resonant system.

The equation representing the load dynamics is

JL
d

dt
ωL = TS − TL. (2.2)

During the motion, the speed ωM and angular position θM of the motor
shaft di�er from respective variables ωL and θL on the load side. Hence, the
torsional torque is given by

TS = KSε+ CS(ωM − ωL), (2.3)

where ε is the di�erence between the motor and load angular positions

ε = θM − θL. (2.4)

The speed of the motor ωM and the speed of the load ωL are respectively

d

dt
θM = ωM (2.5)

d

dt
θL = ωL. (2.6)

In this model, the viscous damping coe�cients of the motor and the load are
being neglected as the damping of the system is low and analysis accuracy
is not a�ected by neglecting the friction. (Zhang and Furusho, 2000)

2.2 State-space representation

A state-space representation of the system is given by the following equations
and is shown in Fig. 2.2.



www.manaraa.com

CHAPTER 2. MODELING OF THE TWO-MASS RESONANT SYSTEM 6

Bu

ẋ

x(0)

A

C

Bw

w

u y

Figure 2.2: State-space representation as block diagram.

ẋ = Ax+Buu+Bww (2.7)

y = Cx, (2.8)

where x is the state vector, u is the input vector, A is the system matrix, Bu

and Bw are the input matrices and C is the output matrix. If a system has
n number of states, m number of inputs and r number of outputs then the
orders of these matrices are given as: A is n×n matrix, B is n×m matrix
and C is r×n matrix. (Buchi, 2010)

The state vector x includes three state variables: the motor speed ωM , the
load speed ωL and the di�erence of the angular positions between the motor
and the load ε. The control u equals the control input TM and w equals the
disturbance input TL. The output is y. The state-space model of a two-mass
resonant system is

d

dt

ωMε
ωL

 =

− CS

JM
−KS

JM

CS

JM

1 0 −1
CS

JL

KS

JL
−CS

JL


︸ ︷︷ ︸

A

ωMε
ωL


︸ ︷︷ ︸

x

+

 1
JM

0
0


︸ ︷︷ ︸
Bu

[
TM
]︸ ︷︷ ︸

u

+

 0
0
− 1
JL


︸ ︷︷ ︸

Bw

[
TL
]︸︷︷︸

w

(2.9)

y =
[
0 0 1

]︸ ︷︷ ︸
C

ωMε
ωL

 . (2.10)
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2.3 Transfer function representation

From the state equations, the transfer function of the system can be calcu-
lated as

G(s) =
Y (s)

U(s)
= C(sI−A)−1Bu. (2.11)

A two-mass resonant system can easily be modeled by functional blocks.
Considering a two inputs and single output system, the block diagram of the
two-mass resonant system can be represented as in Fig. 2.3.

Considering (2.11), the open loop transfer function from the motor torque to
the motor speed can be calculated, if we select the matrix C as

C =
[
1 0 0

]
, (2.12)

and given in the form

ωM(s)

TM(s)
=

1

s(JM + JL)︸ ︷︷ ︸
Rigid part

s2JL + sCS +KS

s2 JMJL
JM+JL

+ sCS +KS︸ ︷︷ ︸
Flexible part

. (2.13)

The transfer function can be assumed to consist of the two parts: the rigid
part and the �exible part. Similarly the open-loop transfer function from the
motor torque to the load speed can be calculated, if we select the matrix C
as

C =
[
0 0 1

]
, (2.14)

and given as

ωL(s)

TM(s)
=

1

s(JM + JL)︸ ︷︷ ︸
Rigid part

sCS +KS

s2 JMJL
JM+JL

+ sCS +KS︸ ︷︷ ︸
Flexible part

. (2.15)

The characteristic equation ∆(s) can be given as

∆(s) = s(s2 + 2ζnωRs+ ωR
2). (2.16)
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ωL(s)
1

sJM
1
sJL

ωM (s)
CS

KS
s

TS(s)
TL(s)

TM (s)

Figure 2.3: Block diagram of the two-mass resonant system.

The resonance frequency ωR and damping ratio ζn are given by

ωR =

√
KS

JL
(1 +R) , ζn =

CS
2

√
1

KSJL
(1 +R), (2.17)

where R = JL/JM is inertia ratio. The anti-resonance frequency is given as

ωA =

√
KS

JL
. (2.18)

The anti-resonance frequency is lower than the resonance frequency. Phase
characteristics of the system change drastically at these frequencies. Exci-
tations change with motor-inverter speed, despite the fact that the natural
frequencies are constant. The resonance characteristics can be explained by
its resonance ratio KR which is given

KR =
ωR
ωA

=

√
1 +

JL
JM

. (2.19)

If we have JM � JL, then the torsional torque oscillations are �ltered by the
large motor inertia JM and the in�uence of the oscillations on the speed con-
trol becomes smaller. In closed-loop motion control, the control bandwidth
of the system is limited by the anti-resonance frequency ωA. If the motor
inertia JM increases then the resonance frequency ωR decreases, without hav-
ing any a�ect on the anti-resonance frequency ωA. On the other hand, both
frequencies ωR and ωA increase with the increase in the mechanical sti�ness
of the shaft KS as well as mechanical bandwidth increases in the closed-loop
system. (Shahgholian et al., 2009a),(Shahgholian et al., 2009b)

2.4 System parameters and frequency response

In this thesis, we are using the parameters for the two-mass resonant system
given in Table 2.1.
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Table 2.1: Two-mass resonant system parameters.

Parameter Symbol Value Unit

Motor inertia JM 0.0044 kgm2

Load inertia JL 0.0360 kgm2

Shaft sti�ness KS 30 Nm/rad
Shaft damping coe�cient CS 0.05 Nm/rad

An open-loop frequency response from the motor torque to the motor speed
can be obtained by (2.13) and shown in Fig. 2.4, using the system parameters
given in Table 2.1. The open-loop frequency response from the motor torque
to the load speed by (2.15) is shown in Fig. 2.5.

It can be seen from the frequency response that the system is highly under
damped. From the characteristic equation (2.16), the natural frequencies
and the damping for the poles of system can be calculated. The open-loop
system has three poles. One pole is in origin where as the resonant pole pair
has the frequency ωR = 87.5 rad/sec and the damping ζ = 0.0729 which is a
very small value, indicating that the system is poorly damped.
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Figure 2.4: Open-loop frequency response from the motor torque to the motor
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Chapter 3

Speed control of two-mass

resonant system

In this chapter, �rst a brief literature review of various speed control strate-
gies for a two-mass resonant system is presented. After that, a pole place-
ment state-space controller design is described. Then, one-degree-of-freedom
(1DOF) and 2DOF control designs are discussed. For the 2DOF controller
design, a feedforward-type structure is used. Finally, two parameter tuning
methods of the PI-type 2DOF controller are presented.

3.1 Control strategies for the two-mass reso-

nant system

A number of control topologies have been proposed to control the two-mass
resonant systems. In many industrial and robotics applications, a light weight
and high load-to-weight ratio construction is required for fast motion and
high e�ciency in operation while considering the fact that the mechanical
parts of the drive systems may have a low resonant frequency.

For these reasons, the dynamics of such systems should be modeled as two-
mass or multi-mass systems. The speed control of such systems has signi�-
cant interest in the scienti�c community due to importance and prevalence
of these systems in the industrial world. The prime objectives of the speed
controllers are: fast tracking of the speed reference, rejection the e�ect of the
load disturbance torque and suppression of the shaft torsional vibration.

Several methods and techniques have been described by researchers to con-

12
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trol the two-mass resonant system such as using PI/PID controllers, PI-speed
controller with additional feedback, a state-feedback speed control system
with and without state observers, an adaptive control scheme, adaptive slid-
ing mode neuro-fuzzy control without mechanical sensors and 2DOF con-
trollers. A brief description of these control structures is presented here.

Dhaouadi et al. (1993) have presented a scheme of the 2DOF speed controller
for rolling mills drives. This 2DOF controller uses an observer based state-
feedback compensator for major control loop. It is considered that all state
variables are available. They used a set-point �lter type 2DOF structure for
speed controller. Control law design is implemented by the combination of
integral control compensation and load disturbance feedforward compensa-
tion. For state-feedback gain design, the pole-placement technique is used.
A roll-o� �lter is used to reduce the system gain beyond the cut-o� frequency
of the system. This speed controller was designed with low overshoot (i.e.
10%).

Kim et al. (1996) have described a 2DOF speed control method of the two-
mass resonant system, based on the induction machine. For the speed control
of the induction motor, the vector control theory is used. The state observer
is constructed from the motor speed which is measured by the speed sen-
sor and the torque producing current. This state observer estimates the
load speed, the shaft torsional torque and the load disturbance torque. A
feedback controller is designed using these state variables. In order to im-
prove the speed response a feedforward controller is also designed by using
the one-mass system, neglecting the shaft torsional vibration. The complete
control structure is a 2DOF speed controller. In this controller, the feed-
back controller is responsible for the internal stability of the system and the
feedforward controller is designed for fast speed response to the command.
This 2DOF controller is compared with the state-feedback controller and it is
shown that it is more robust on load disturbance torque and shaft torsional
vibrational as well as contains a fast speed response property.

Hara et al. (1997) provided a comparison for the state feedback-based speed
control systems with state observers and without state observers in the mo-
tor drives. They have presented a design for a robust state feedback-based
speed control system considering the stability condition and frequency re-
sponse wave shaping. This state-feedback controller is designed by using
only measureable state variables without a state observer and denoted as a
partial state-feedback controller. The optimal feedback gains are determined
by evaluating the appropriate area on the parameter plane, called the gain
area, using Hurwitz stability criterion. Then they have presented a com-
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Table 3.1: Relationship between the damping behavior and the inertia ratio.
(Zhang and Furusho, 2000)

Pole assignment pattern
Inertia ratio

R < 1 1 ≤ R < 2 2 ≤ R ≤ 4 R > 4

Identical radius Under damped Under damped Well damped Impossible
Identical damping coe�cient Under damped Under damped Well damped Well damped and over damped

Identical real part Under damped Well damped Well damped Impossible

parison between the state-feedback controller and the partial state-feedback
controller by µ analysis. The partial state-feedback controller is not as excel-
lent as the state-feedback controller in terms of robust stability when plant
parameters are varying but it is easier to apply the partial state-feedback
controller due to its simple control system structure without observers.

Zhang and Furusho (2000) have described the redesigning of a conventional
PI speed controller for the two-mass resonant system. The damping char-
acteristics of the system are derived and analyzed. They have shown the
dependence of the inertia ratio of the load to motor on the dynamic charac-
teristics of the system. Three kinds of pole placement techniques have been
used:

• Pole assignment of identical radius.

• Pole assignment of identical damping coe�cient

• Pole assignment of identical real part

The merits of each pole-assignment design are concluded. Finally, a method
is proposed to improve the damping of the system for a small inertia ratio
by a derivative feedback of the motor speed. For these three types of pole
assignments, the relationship between the damping behavior and the inertia
ratio is summarized and shown in Table 3.1 where R = JL/JM is the inertia
ratio.

Lee et al. (2006) have described a recursive robust control design method
for the �exible joints of the industrial robots. These �exible joints can be
considered as cascade systems composed of two subsystems: the link-side
dynamics and the motor-side dynamics driven by the driving torque input.
The controller is designed on the basis of a recursive method for the cascade
system to achieve the robustness at each step. The robustness of the designed
controller is compared with the conventional state feedback controller. In the
design method, they have �rst designed a �ctitious control for the link-side
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dynamics and then they designed the real control for the overall system so
that the motor-side dynamics e�ectively tracks the �ctitious control. The
real control part is designed as a PID-controller for the complete system.

A comparative study about vibration suppression in a two-mass resonant
system from the PI-speed controller and additional feedbacks using the clas-
sical pole-placement method is described by Szabat and Kowalska (2007). In
order to get access to damping, some information is required from the load
side. For a two-mass resonant system, additional feedbacks are required to
achieve the desired damping coe�cient and resonant frequency simultane-
ously. Rather than using a large number of possible feedbacks, it is shown
that the systems with one additional feedback can be divided into three dif-
ferent groups, according to their dynamic characteristics. Finally, a system
with two additional feedbacks is investigated and then a comparison of the
considered structures is carried out. The best dynamical characteristics are
obtained by the control structure with one additional feedback, from the
following possible feedbacks:

• Feedback from derivative of the torsional torque, provided to the torque
node.

• Feedback from the di�erence between the motor and the load speeds
provided to the torque node.

• Feedback from the load speed, provided to the torque node.

Shahgholian et al. (2009a) have presented a PID controller design for the two-
mass resonant system by consideration of the frequency response and the step
response characteristics. They have used the pole-placement technique which
is based on the coe�cient diagram method to assign the closed-loop poles of
the system. Then, by using the relation among the coe�cient of the closed-
loop characteristic polynomial, the gains of the PID controller are calculated.
By comparison, analysis and simulation of the PID controller and the PID
controller with active damping, it is shown that a better speed response to
suppress the mechanical vibrations is achieved by using the proposed PID
controller tuning.

A state-space analysis and control design for the two-mass resonant system
is presented by Shahgholian et al. (2009b). This methodology depends on
the resonance ratio control by using optimal criterion of the system. This
controller consists of the integral controller and the proportional controller
with an additional feedback signal from the shaft torque. The controller
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Table 3.2: Comparison of proposed speed control approaches by Thomsen
et al. (2010).

Comparison criteria PISC PI − SSSC GPCSC
Dynamics

Small-signal performance Low Excellent Good
Large-signal performance Low Good Good
Disturbance rejection Low Excellent Good
Stress of drive shaft High Low Low
Stability Properties

Relative stability High Excellent Medium
Robustness concern, uncertain parameters High High Medium

Calculation time Low Low High
Possibilities of controller design Low High Medium

Complexity of implementation and tuning Low High High

bandwidth in the closed-loop motion control system is limited by the anti-
resonant frequency of the system. The controller gains are obtained by the
coe�cient diagram method which is an indirect pole-placement method to
design an appropriate characteristic polynomial.

Thomsen et al. (2010) presented a comparative study of di�erent control
strategies of the two-mass resonant systems. They describe and compare
three di�erent control methods: the conventional PI control (PISC), the PI-
based state-space control (PI−SSSC) and the generalized predictive control
(GPCSC). For suitable comparison, the three controller types are designed
with equal bandwidth and veri�ed with the same test setup. The results
are shown in Table 3.2. The conventional PI-control system provides a low
control performance and high stress on the mechanical system but it is easy
to design and implement. More e�ective results are achieved by the GPCSC .
The limitation of GPCSC is the required online time calculation. The best
results are concluded for the PI-based state-space control design due to its
free pole placement but for this scheme an observer for the estimation of the
non-measured states is required.

Orlowska-Kowalska et al. (2010) has presented a sliding-mode neuro-fuzzy
speed controller, whose connective weights are tuned online according to
the error between the estimated motor speed and the reference model speed
for the two-mass induction motor drives without mechanical sensors. The
e�ectiveness of this adaptive sliding mode neuro-fuzzy speed controller is de-
scribed. A gradient descent algorithm is used according to the error between
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the estimated speed and the reference model output to tune the connective
weights. The speed of the induction machine is estimated using the model
reference adaptive control (MRAC) scheme and the rotor speed is calculated
on the basis of the error between the measured and the estimated stator
currents of the motor. It is shown that the proposed controller has better
performance than the conventional PI controller.

3.2 State-space controller design

In this section, a state-feedback speed controller for a two-mass resonant
system is designed.

3.2.1 Control law design for full state feedback

When designing a state-space controller, the basic task is to �nd the control
law as the feedback of a linear combination of the state variables. The pur-
pose of the control law is to assign a set of pole locations for the closed-loop
system that will correspond to a satisfactory dynamic response in terms of
the rise time and other measures of the transient response. (Franklin et al.,
2002)

Generally, the control law is

u = −Kx =
[
k1 k2 ... kn

]

x1
x2
.
.
xn

 . (3.1)

The system design with control law is shown in Fig. 3.1.

Pole-placement method

The pole-placement method is used to place the poles of a closed-loop system
on the desired location by the state feedback, through the appropriate state
feedback gain matrix if the given system is perfectly controllable.

This method can be applied in both cases where either the state-space model
of the system is given or the related system is given by the transfer functions.
The constraint for the state-feedback technique is: all state variables have to
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u = −Kx
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ẋ = Ax+Buu+Bww

w

Figure 3.1: System design with control law.

be available. It is required to measure all state variables or to include the
state observers into the system.

If we have a state-space model of a system as in (2.7), (2.8) and w = 0 then
it is required to �nd the gain matrix (3.1) for the state-space controller. It
means that the control signal is determined by the system states at each
moment.

Designing of the controller requires deciding the appropriate state feedback
gain matrix K. The dimension of the gain matrix K is 1×n where n is the
number of the system states. Now if u is substituted from (3.1) into (2.7)

ẋ = (A−BuK)x. (3.2)

The response in the time domain is

x(t) = e(A−BuK)tx(0), (3.3)

where x(0) is the initial state of the system. The stability and transient
response characteristics of the system are determined by the eigenvalues of
the matrix (A−BuK). These eigenvalues are called regulator poles. If these
regulator poles are located in the left half plane, the closed-loop system will
be stable. The purpose of the pole-placement method is to obtain the gain
matrix K by assigning the closed-loop poles of the system to appropriate
locations on the left side of the s-plane in order to get the desired response
of the system. (Dorf and Bishop, 2001), (Wang et al., 2009)
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Selection of pole locations

An important aspect of the pole-placement design method is to decide, where
to locate the closed-loop poles. The control e�ort required for controlling a
system is related to that how far the open-loop poles are moved by feedback.
Furthermore, poles are attracted by open-loop zeros, therefore it is normally
hard to move a pole far away from a nearby zero.

The pole-placement design technique that aims to �x the undesirable aspects
of the open-loop system response will typically allow the smaller control
actuators as compared to that arbitrarily picks all the poles in some location
without regard to the original open-loop poles.

There are many techniques to select the appropriate pole locations such as:

• Dominant second-order method.

• Prototype design method.

• Symmetric root locus method.

• Linear quadratic regulator (LQR) method.

The �rst two approaches deal with the pole selection, without explicit regard
for their e�ect on the control e�ort whereas the third technique speci�cally
addresses the issue of achieving a good balanced system response and control
e�orts (Franklin et al., 2002). Keeping in mind the open-loop pole locations,
the �rst method will be used for designing a state-space controller.

Dominant pole pair design

For a higher order system, closed-loop poles can be considered as a desired
pair of dominant second-order poles; the rest of the poles can be selected to
have real parts corresponding to su�ciently damped modes. In this way, the
system will mimic a second-order response with reasonable control e�orts.
By proper design it is possible to force the closed-loop poles of the higher
order system to the two regions as shown in Fig. 3.2.

A complex conjugate pole pair is placed in Region 1 and all other poles are
in Region 2. The pair of complex conjugate pole in Region 1 has a dominant
e�ect on the transient response of the system and refers as the dominant
pole pair of the system. The parameters ζ and ωn of the dominant pole
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Figure 3.2: Regions of dominant and insigni�cant poles in the s-plane.

pair characterize the dynamics of the system. Low-frequency modes can be
considered to achieve desired values of ζ and ωn, and select the rest of the
poles to increase the damping of high-frequency modes, while holding their
frequency constant to minimize control e�orts. It is important to consider
that the zeros of the system should be far enough into the left half s-plane so
as to avoid any appreciable e�ect on the second-order behavior of the system.
The speci�cations of the relative stability and the speed of response are
translated into a pair of the dominant closed-loop poles using the following
relations. (Franklin et al., 2002),(Gopal, 2002)

Rise time : tr =
2.16ζ + 0.60

ωn
. (3.4)

Peak time : tp =
π

ωn
√

1− ζ2
. (3.5)

Settling time (for 2% criteria) : ts =
4

ζωn
. (3.6)
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Peak overshoot : Mp = e−πζ/
√

1−ζ2 . (3.7)

The desired locations of the closed-loop poles are

s1,2 = −ζωn ± jωn
√

1− ζ2. (3.8)

The design requirement is to force two of the closed-loop poles at the speci�ed
dominant positions and all other poles in the insigni�cant region. A simula-
tion study can be performed to see whether the design is acceptable, if not,
rearrange the design cycle to get a di�erent distribution of the closed-loop
poles. (Franklin et al., 2002),(Gopal, 2002)

3.2.2 Integral action

The state-feedback is a PD-type control. In order to reduce the steady state
error, integral control is required. Consider a system, having a state-space
model as shown in (2.7), (2.8) and w = 0. It is possible to feedback the
integral of the error as well as the states of the plant, while augmenting the
plant states with an extra (integral) state xI (Franklin et al., 2002).

This extra integral state obeys the following di�erential equation

ẋI = Cx− r, (3.9)

where r is the reference input. Hence the integral state xI is

xI =

∫ t

e dt, (3.10)

where e is the error. The augmented state equations for the system become[
ẋI
ẋ

]
=

[
0 C

0 A

] [
xI
x

]
+

[
0
Bu

]
u−

[
1
0

]
r. (3.11)

The feedback law is given as

u = −
[
kI K

] [xI
x

]
. (3.12)

The block diagram of the system with the integral state xI is represented as
in Fig. 3.3.
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Figure 3.3: Integral control structure.

3.2.3 State-space controller

Considering a two-mass resonant system, a state-space controller is included
in the system to make it a closed-loop system. The block diagram of the
closed-loop system is shown in Fig. 3.4.

The gains can be calculated analytically from the closed-loop model. The
state-space equations of the closed-loop system are given in (3.11) and (3.12)
where kI is the gain for the integral control and the gain matrix K is

K =
[
k1 k2 k3

]
, (3.13)

where k1, k2 and k3 are the gains for ωM , ε and ωL, respectively.

The closed-loop system can be presented as[
ẋI
ẋ

]
=

[
0 C

−BukI A−BuK

]
︸ ︷︷ ︸

Acl

[
xI
x

]
−
[

1
0

]
r. (3.14)

(3.15)

Eigenvalues (poles) of the closed-loop system can be calculated from the
characteristic equation

B(s) = det(sI−Acl). (3.16)

The characteristics of the closed-loop system can be decided by the pole-
placement design method. This closed-loop system with the integral control
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Figure 3.4: State-space controller of the two-mass resonant system with in-
tegral control.

becomes a fourth-order system. The characteristic equation of the system is

B(s) =

Dominant︷ ︸︸ ︷
(s2 + 2ζ1ω1 + ω2

1)

Resonant︷ ︸︸ ︷
(s2 + 2ζ2ω2 + ω2

2)

=s4 + 2(ζ1ω1 + ζ2ω2)s
3 + (ω2

1 + ω2
2 + 4ζ1ω1ζ2ω2)s

2

+2(ζ1ω1ω
2
2 + ζ2ω2ω

2
1)s+ ω2

1ω
2
2. (3.17)

ζ1 and ω1 decide the transient response of the system and ζ2 and ω2 are
responsible for the resonance behavior of the system. Comparing (3.16) and
(3.17), the following state-feedback gains can be found

kI = −JLJMω
2
1ω

2
2

KS

(3.18)

k1 =
2JLJM(ζ1ω1 + ζ2ω2)− CS(JL + JM)

JL
(3.19)

k2 =
JLJM(ω2

1 + ω2
2 + 4ζ1ω1ζ2ω2)− CS(k1 + k3)−KS(JL + JM)

JL
(3.20)

k3 =
2JLJM(ζ1ω1ω

2
2 + ζ2ω2ω

2
1)−KSk1 + CSkI

KS

. (3.21)

It is required to set the values of the tuning parameters ω1, ω2, ζ1 and ζ2 to
calculate the gains for the state-space controller.
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Figure 3.5: Two-degree-of-freedom-control system.

3.3 Two-degree-of-freedom controller design

The degree of freedom of a control system is de�ned as the number of the
closed-loop transfer functions that can be adjusted independently. A general
form of a 2DOF-control system is shown in Fig. 3.5. The control system con-
sists of two controllers C(s) and Cf (s). In this control system, C(s) is known
as the feedback controller and Cf (s) is called the feedforward controller. The
P (s) represents the plant to be controlled by the control system.

3.3.1 Feedback controller

Consider only the feedback controller and neglect the e�ect of the feedforward
controller for the control system in Fig. 3.5. This arrangement makes this
control system a one-degree-of-freedom (1DOF) control system. The closed-
loop transfer function from the reference input r to the controlled output
y and from the disturbance d to the controlled output y can be given as
respectively

Gyr1(s) =
P (s)C(s)

1 + P (s)C(s)
(3.22)

Gyd1(s) = − P (s)

1 + P (s)C(s)
. (3.23)

Here the subscript "1" indicates that these quantities are related to the
1DOF-control system. The two transfer functions, in (3.22) and (3.23), con-
tain only one element that can be tuned, which is C(s). Therefore, it is not
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possible to change them independently. The relation of these two functions
can be shown as

P (s) = Gyr1(s)P (s)−Gyd1(s). (3.24)

The equation shows that Gyr1(s) can be determined uniquely for any given
P (s), provided Gyd1(s) is chosen and vice versa. Hence, the reference in-
put response becomes poor if the disturbance response is optimized and vice
versa. Due to this fact, some researchers gave two separate tables for the
optimal tuning of such controllers, where one is for the "disturbance opti-
mal" parameters and the other for the "reference input optimal" parameters.
(Chien et al., 1952)(R.Kuwata, 1987)

For the 1DOF-control system, it is not possible to optimize the reference
input response and the disturbance response at the same time. This situation
is shown in Fig. 3.6. The bold line indicates the Pareto optimal points for
the 1DOF-control system. Only the hatched area in Fig. 3.6 is realizable by
the 1DOF-control system. Here, points "A" and "B" are de�ned as:

• A is the disturbance optimal point.

• B is the reference input optimal point.

This limitation of the 1DOF-control structure compels to choose from these
alternatives:

1. Choose one of the Pareto optimal points.

2. Use the disturbance optimal parameters and impose limitations on ref-
erence input variable change.

The second alternative is very useful for those systems where the reference
input variable is not changed very often. This limitation can be avoided
by using a 2DOF-control system instead. It provides good means to make
both the reference input response and the disturbance response practically
optimal at once within a linear framework. (Araki and Taguchi, 2003)

3.3.2 Feedforward controller

Consider the complete control system consisting of the feedback controller
and the feedforward controller as shown in Fig. 3.5. This control system is a
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Figure 3.6: Conceptual illustration of the control structure's e�ect.

2DOF-control system. The closed-loop transfer functions from the reference
input r to the output y and from the disturbance d to the output y are
respectively

Gyr2(s) =
P (s)[C(s) + Cf (s)]

1 + P (s)C(s)Q(s)
(3.25)

Gyd2(s) = Gyd1(s). (3.26)

Here the subscript "2" indicates that these quantities are related to the
2DOF-control system. The steady state error to the unit step change of
the reference input εr,step and the steady state error to the unit step distur-
bance εd,step becomes zero if the following conditions are ful�lled: (Araki and
Taguchi, 2003)

lim
s→0

C(s) =∞ (3.27)
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lim
s→0

Cf (s)

C(s)
= 0 (3.28)

lim
s→0

P (s) 6= 0. (3.29)

To satisfy these conditions, a simple case is that the C(s) includes an inte-
grator but the Cf (s) does not contain any integrator. A number of topologies
have been proposed considering the di�erent industrial aspects for the 2DOF-
control system: (Araki and Taguchi, 2003)

• Feedforward-type structure of the 2DOF-control system.

• Feedback-type structure of the 2DOF-control system.

• Set-point-�lter-type structure of the 2DOF-control system.

• Filter and preceded-derivative type structure of the 2DOF-control sys-
tem.

• Component separated type structure of the 2DOF-control system.

From all these categories, feedforward-type structure of the 2DOF-control
system is of interest to us and it will be used in our design.

The feedforward-type structure of the 2DOF-control system is shown in Fig.
3.5. This structure is called feedforward-type due to the presence of a feed-
forward path from the reference input r to the manipulated variable u. The
controller part is a two-input one-output system. The reference input r and
the controlled output y are the input signals for the controller whereas the
manipulated variable u is the output signal of the controller.

Comparing (3.22) and (3.23) with (3.25) and (3.26), it is seen that the closed-
loop transfer functions for the 1DOF and the 2DOF-control systems are
related to each other:

Gyr2(s) = Gyr1(s) +
P (s)Cf (s)

1 + P (s)C(s)
. (3.30)

It can be concluded that
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• The reference input response of the controllers di�ers by the amount
of the second term in (3.30). This term can be changed by adjusting
the Cf (s).

• Both 1DOF and 2DOF-control systems have the same disturbance re-
jection response.

Hence, it is expected that from the 2DOF-control system, an improved ref-
erence input response can be obtained without deteriorating the disturbance
response by appropriate tuning of the Cf (s). For the 2DOF-control system,
we can realize point "C" in Fig. 3.6. This clearly shows the advantage of the
2DOF-control system over the 1DOF-control system, providing more �exibil-
ity and improved results for the 2DOF-control system.(Araki and Taguchi,
2003)

3.4 2DOF controller for the two-mass resonant

system

In this section, we will design a 2DOF controller for a two-mass resonant
system described in Chapter 2. The structure of this 2DOF controller is
of the feedforward type, including a feedback controller and a feedforward
controller. We will use two di�erent tuning techniques for the parameter
selection of the 2DOF controller:

• Parameter tuning according to the rigid system model.

• Parameter tuning according to the �exible system model.

In the �rst tuning method, the two-mass resonant system is considered as
a rigid system for the parameter tuning whereas in the second method, the
�exible behavior of the two-mass resonant system is also taken into account
for the parameter tuning.

The primary object in this control system design is to:

• Achieve fast tracking of the load speed with respect to the reference
speed without overshoot.

• Reject the e�ect of the load torque.
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In order to ensure the stability of the closed-loop system, there must be a
bandwidth limitation of the feedback loop. It is also required to achieve the
maximum possible bandwidth for the 2DOF speed controller. It is important
to notice that in most industrial applications, where it is required to control
the two-mass resonant system, measured information from the motor side is
only available. The load information is not, usually, available. We will design
the controller by considering the feedback signal from the motor instead of
load, to control the load speed of the system.

3.4.1 Parameter tuning according to rigid system model

The feedforward type structure is used for this 2DOF-control system as shown
in Fig. 3.5. In this tuning method we will model and analyze the plant by
consideration of only the rigid part of the two-mass resonant system from
(2.13). The �rst step in the design of a 2DOF controller is to design the
feedback controller C(s). The feedback controller C(s) will be a PI controller
which provides the stability and satisfactory performance with respect to the
disturbances and the system uncertainties. The second step is to choose
the feedforward controller Cf (s) to shape the overall transfer function of the
system as well as to obtain the desired command following speci�cations.

Feedback controller design

Consider Fig. 3.5 without taking into account the feedforward controller.
The plant P (s) is modeled considering only the rigid part and the feedback
controller C(s) is a PI controller. The reference input to the system is the
reference load speed ωrefL and the controlled variable is the load speed ωL.

C(s) = KP +
KI

s
. (3.31)

P (s) =
1

s(JM + JL)
. (3.32)

Considering (3.31) and (3.32), the closed-loop transfer function from ωrefL to
ωL is given as

ωL(s)

ωrefL (s)
=

KP

JM + JL

s+ KI

KP

s2 + ( KP

JM+JL
)s+ KI

JM+JL

. (3.33)
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Similarly, the closed-loop transfer function from TL to ωL is given as

ωL(s)

TL(s)
=

−1

JM + JL

s

s2 + ( KP

JM+JL
)s+ KI

JM+JL

. (3.34)

The gains are analytically parameterized in terms of the inertia and the
desired closed-loop bandwidth αs. Hence, the values of KP and KI are given
as

KP = αs(JM + JL) (3.35)

KI =

(
αs
2ζ

)2

(JM + JL). (3.36)

where ζ is the damping coe�cient of the system. Substituting the values of
KP and KI in (3.33) and (3.34), a denominator polynomial for both transfer
functions is obtained as

s2 + αss+

(
αs
2ζ

)2

. (3.37)

Bandwidth selection

The bandwidth αs should be less than the anti-resonance frequency of the
two-mass resonant system. Considering the anti-resonance frequency from
(2.18), the bandwidth of the system should be selected as

αs ≤
√
KS

JL
. (3.38)

The gains KP and KI of the 2DOF controller can be obtained from (3.35)
and (3.36), by appropriate selection of bandwidth αs and damping coe�cient
ζ of the system.

Feedforward controller design

When the main aim of the speed controlled system is to track the step-alike
reference changes, only feedback controller (1DOF control structure) does
not give su�cient results because of the overshoot. To reduce or eliminate
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the overshoot appearing in the 1DOF control system, the structure can be
modi�ed by adding a feedforward controller Cf (s) for the reference, to obtain
the 2DOF-control system. The closed-loop transfer functions from the load
speed reference ωrefL to the load speed ωL becomes

Pc(s) =
ωL(s)

ωrefL (s)
=
Cf (s)P (s) + C(s)P (s)

1 + C(s)P (s)
. (3.39)

In principle, the closed-loop dynamics can be selected arbitrary by selecting
a proper feedforward �lter Cf (s). In this case, tracking of the step-alike
references is considered which leads to a selection of the �rst-order closed-
loop dynamics. Furthermore, let us boost the dynamics of the closed-loop
system m times. The dynamics of the closed-loop system is to be

Pc(s) =
mαs

s+mαs
. (3.40)

The transfer function Cf (s) can be solved from (3.39) and (3.40) by substi-
tuting the transfer functions of the process P (s) and the PI controller C(s):

Cf (s) =
[(JM + JL)mαs −KP ]s−KI

s+mαs
. (3.41)

If the PI controller parameters in (3.35) and (3.36) are substituted to (3.41),
the transfer function Cf (s) becomes

Cf (s) =
(JM + JL)αs[(m− 1)s− αs

4ζ2
]

s+mαs
. (3.42)

Four special cases can be separated from (3.42):

• If the bandwidth of the 2DOF system is increased compared to the
1DOF design (i.e. m > 1), the feedforward �lter Cf (s) is a phase-lead
�lter.

• If the bandwidth of the 2DOF system is decreased compared to the
1DOF design (i.e. m < 1), the feedforward �lter Cf (s) is a phase-lag
�lter.

• If the bandwidth of the 2DOF system is the same as in the 1DOF
design (i.e. m = 1), the feedforward �lter is simply a low-pass �lter.
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TMC(s)

Cf (s)

Figure 3.7: Detailed block diagram for 2DOF PI control of two-mass resonant
system.

• If the bandwidth of the 2DOF system is half of the bandwidth in the
1DOF design and the feedback is critically damped (i.e. m = 1/2 and
ζ = 1), the feedforward �lter is only a constant (Cf (s) = −Jαs/2).
This corresponds to the "active-damping" control design. (Harnefors
et al., 2001)

It is also notable that if the bandwidth of the 2DOF controller is "boosted"
(m > 1), the feedforward �lter Cf (s) will have an unstable zero so there
will occur non-minimum phase behavior in the �lter. In this thesis, we are
considering the third special case and selecting the bandwidth of the 2DOF
system as m = 1, leading to

Cf (s) = −
(JM + JL)(αs

2ζ
)2

s+ αs
, (3.43)

which is a �rst-order low-pass �lter. The detailed block diagram of the closed-
loop system, consisting of the 2DOF controller and the two-mass resonant
system, is shown in Fig. 3.7.

By parameter selection of the feedforward controller from (3.43) and the
parameter selection of the feedback controller from (3.35) and (3.36), the
2DOF speed controller can be tuned according to a rigid system model.

Dynamic references tracking

Especially in servo applications, the speed controlled system may not be
driven with the step-alike references. Instead, for example the trapezoidal
speed references are used, when the system is driven from one position to
another. When the trapezoidal velocity reference is used, the speed of the
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system is �rst accelerated to the constant value and then decelerated back
to zero.

Let us study the tracking error of the 1DOF system and the 2DOF system
if the system is accelerated with a constant acceleration α. This means that
the speed reference is ωrefL (t) = αt, which is in the s-domain ωrefL (s) = α/s2.
The tracking error of the closed-loop system Pc(s) can be expressed as

E(s) = ωL(s)− ωrefL (s) = ωrefL (s)[Pc(s)− 1]. (3.44)

Let us solve the steady-state tracking error for both the 1DOF and the 2DOF
control structures. The closed-loop TF of the 1DOF control structure is

Pc(s) =
αss+ (αs

2ζ
)2

s2 + αss+ (αs

2ζ
)2
. (3.45)

By substituting (3.45) and ωrefL (s) = α/s2 to (3.44), the error becomes

E(s) = − α

s2 + αss+ (αs

2ζ
)2
. (3.46)

The steady-state tracking error ess can be solved from (3.46) when applying
the �nal value theorem

ess = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

(
− αs

s2 + αss+ (αs

2ζ
)2

)
= 0. (3.47)

By substituting (3.40) and ωrefL (s) = α/s2 to (3.44), the error becomes

E(s) = − α

s(s+mαs)
. (3.48)

Futhermore, the steady-state tracking error ess is

ess = lim
s→0

(
− α

s+mαs

)
= − α

mαs
. (3.49)

This brief analysis indicates that if the system is desired to follow the dynamic
speed references, one should be careful when using the �rst-order closed-loop
model. In this simple example, if the acceleration part is long enough, the
tracking error of the 2DOF system will approach the value α/(mαs), when
at the same time the tracking error of the 1DOF system will approach to
zero.
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3.4.2 Parameter tuning according to �exible system model

In the tuning method of a 2DOF PI controller presented by Zhang and Fu-
rusho (2000), the two-mass resonant system is modeled as the �exible system.
It is shown that three kinds of analytical pole placement techniques can be
used. The relationship between the damping behavior and the inertia ratio
is shown in Table 3.1.

Considering the inertia ratio from the two-mass system parameters presented
in Table 2.1, we get

Inertia ratio : R =
JL
JM

= 8.18. (3.50)

It is clear from Table 3.1, that only the pole assignment technique "identical
damping coe�cient" can be applied to this system as the inertia ratio is
greater than 4. We will design the controller using an identical damping
coe�cient pole assignment technique as described by Zhang and Furusho
(2000).

In order to compare both tuning methods, we will rearrange the block di-
agram of the control system, presented by Zhang and Furusho (2000) in a
feedforward type structure so that we can have a feedback controller C(s) and
feedforward controller Cf (s). In the block digram of the system according to
Zhang and Furusho (2000), the motor torque is given as

TM(s) =
KI

s
[ωrefL (s)− ωM(s)]−KPωM(s). (3.51)

Now, if we modify this system so as to use the common PI controller in
the feedback loop and introduce the reference feed-forward �lter, the motor
torque is given as

TM =
KI

s
(ωrefL − ωM) +KP (ωrefL − ωM) + Frω

ref
L . (3.52)

In order to get same expression for the motor torque, we have to select

Cf (s) = −KP . (3.53)

The modi�ed block diagram for this control system, in terms of the feedfor-
ward type structure, is shown in Fig. 3.7.
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Controller gains

The closed-loop transfer function from the reference input ωrefL to the load
speed ωL is given as

ωL(s)

ωrefL (s)
=

KIωA
2

JMs2(s2 + ω2
R) + (KP s+KI)(s2 + ω2

A)
. (3.54)

It is to be noted that this transfer function does not include the shaft damping
coe�cient CS. Here ωA is anti resonance frequency, ωR is resonance frequency
and R is the inertia ratio of the load to the motor and given as

ωR = ωA
√

1 +R. (3.55)

The system in (3.54) can be arranged as

ωL(s)

ωrefL (s)
=

ω2
1ω

2
2

(s2 + 2ζ1ω1s+ ω2
1)(s2 + 2ζ2ω2s+ ω2

2)
, (3.56)

where ω1, ω2 are the natural angular frequencies and ζ1, ζ2 are the damping
coe�cients. If we compare (3.54) and (3.56), we get following four equations

KP = 2(ζ1ω1 + ζ2ω2)JM (3.57)

KI =
ω2
1ω

2
2

ω2
A

JM (3.58)

ω2
A(ω2

1 + ω2
2 + 4ζ1ζ2ω1ω2)− ω2

1ω
2
2 = ω4

A(R + 1) (3.59)

ω1ζ1(ω
2
2 − ω2

A) = ω2ζ2(ω
2
A − ω2

1). (3.60)

Since we have only two adjustable feedback coe�cients (Kp, KI), it is not
possible to assign the four poles arbitrarily. From (3.59) and (3.60), we get
constraint relations among the pole locations. The pole locations are directly
related to the inertia ratio R of the system as depicted by (3.59).

It is clear from (3.60) that

min(ω1, ω2) ≤ ωA and max(ω1, ω2) ≥ ωA. (3.61)
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Figure 3.8: Pole assignment with identical damping coe�cient (Zhang and
Furusho, 2000).

Since the bandwidth of the system is determined by min(ω1, ω2), we cannot
have the bandwidth more than the anti-resonance frequency ωA of the system.
(Zhang and Furusho, 2000)

Pole assignment of identical damping coe�cient

The poles of the system (for dominant pole pair and resonant pole pair)
are assigned to achieve identical damping coe�cient as shown in Fig. 3.8.
The dashed lines indicate the damping coe�cient of both pole pairs. The
frequencies of dominant pole pair and resonant pole pair move along these
dashed lines where ζ1 = ζ2. It is shown by Zhang and Furusho (2000) that
the overshoot of the system will gradually decrease with the increase of the
identical damping coe�cient. This can be observed clearly in Fig. 3.9. It is
shown that the system overshoot is lower than 6.5% if the values of identical
damping coe�cients will be chosen as ζ1 = ζ2 ≥ 0.7. The overshoot of the
system will be within 2% if ζ1 = ζ2 ≥ 0.85.

For the identical damping coe�cients of the system, (3.59) and (3.60) can be
reduced as
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Figure 3.9: Overshoot for identical damping coe�cient (Zhang and Furusho,
2000).

(
ωA
ω1

− ω1

ωA

)2

= R− 4ζ21 (3.62)

ω2 =
ω2
A

ω1

. (3.63)

We can derive ω1 and ω2 from (3.62) and (3.63) and given as

ω1 =

√
R− 4ζ21 + 4−

√
R− 4ζ21

2
ωA (3.64)

ω2 =

√
R− 4ζ21 + 4 +

√
R− 4ζ21

2
ωA. (3.65)

Now ω1 should be a nonnegative real number. Hence, we have to select the
value of the damping coe�cient as

ζ1 = ζ2 ≤
√
R

2
. (3.66)

If the value of the R is greater than or equal to 4, then the damping coe�cient

values can be assigned within 0 to 1 or (1−
√
R
2

). In this way, the four poles of
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the system become the two pairs of complex conjugate roots, two double-real
roots or four distinct real roots as per the selection of damping coe�cient:

Two pairs of complex conjugate : ζ1 = ζ2 < 1 (3.67)

Two double real roots : ζ1 = ζ2 = 1 (3.68)

Four distinct real roots : ζ1 = ζ2 > 1 (3.69)

From these selections of parameters, the 2DOF controller can be tuned ac-
cording to a �exible system model.
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Chapter 4

Gain calculations and simulations

In this chapter, the simulation results for the three designed controllers,
the state-space (SS) controller, the 2DOF controller with parameter tuning
according to the rigid system model (2DOFRSM) and the 2DOF controller
with parameter tuning according to the �exible system model (2DOFFSM)
are presented. Finally, the responses of the three controllers are compared
to each other for performance comparison.

4.1 Introduction to simulation models

In this section, the simulation models for the SS-control system and the
2DOF-control system are presented. The Matlab/Simulink software is used
for the modeling and simulation of the speed control system. In the real
systems, the encoders are also present in the complete drive system. This
encoder, however, will add some noise in the system response. Hence, we
have included an encoder model to incorporate the e�ect of the noise in the
simulation results.

The input to the closed-loop system is the reference load speed ωrefL and the
output is the load speed response of the system ωL. The load reference speed
input to the closed-loop system is stepped from 0 to 50 rad/sec at 0.1 second
and the load torque is stepped from 0 to 10 Nm at 1.5 second.

In the simulation model, the main blocks of the model are the speed con-
troller, the two-mass resonant system and the encoder model. The simula-
tion model of the closed-loop system, including the state-space controller, the
two-mass resonant system and the encoder model is shown in Fig. 4.1. The
closed-loop system is modeled according to Fig. 3.4. The simulation model

39
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Figure 4.1: Simulation model of the state-space speed control system.

of the speed control system including the 2DOF controller, the two-mass
resonant system and the encoder model is presented in Fig. 4.2. The speed
control system is modeled according to Fig. 3.7.

4.2 Parameter gain selection

The designing rules for the selection of the gains for the controllers are de-
scribed in Chapter 3. Considering those gain calculation rules, we will cal-
culate the gains of the controllers by using the system parameters given in
Table 2.1. First, we will �nd the aggressive design for all controllers to �nd
the maximum bandwidth for each controller. Secondly, the response of the
all controllers are examined to achieve the equivalent rise time. Finally, the
controller parameters are adjusted to achieve the equivalent load torque re-
jection.

4.2.1 Aggressive design of the controllers

In order to calculate the gain values for the designed controllers to achieve
the maximum bandwidth for 5% overshoot criteria, we are using the design
rules as presented in Chapter 3 to calculate the gains for all controllers.

State-space controller's gains

It is clearly evident from (3.17), that the state-space speed control is a fourth-
order system. we are considering the dominant pole pair method to select



www.manaraa.com

CHAPTER 4. GAIN CALCULATIONS AND SIMULATIONS 41

Figure 4.2: Simulation model of the 2DOF speed control system.

the frequencies and the damping ratios of the dominant and the resonant
pole pairs. Considering that, the parameters ζ1 and ω1 are associated with
the dominant pole pair and the parameters ζ2 and ω2 are associated with the
resonant pole pair and represented as

Dominant pole pair : s2 + 2ζ1ω1 + ω1
2 (4.1)

Resonant pole pair : s2 + 2ζ2ω2 + ω2
2 (4.2)

The frequency of the resonant pole pair is selected equal to the undamped
natural frequency of the system

ω2 = ωR = 87.5 rad/s. (4.3)

Several simulations have been carried out, using di�erent values of the damp-
ing ratios ζ1 for the dominant pole pair, ζ2 for the resonant pole pair and the
maximum bandwidth of the system to analyze the behavior of the control
system. The system response is well damped and has 5% overshoot for the
values of the damping ratios and the frequencies as shown in Table 4.1.

Ideally, the overshoot can be reduced by increasing the value for the damping
ratio of the resonant pole pair ζ2 but in order to compare the response of
the three designed controllers we have chosen the value of ζ2 to get the
overshoot in the system response. It is important to notice that, by selecting
a small value of ζ2 for the resonant pole pair, the gain values of the controller
are not too high. It is in favor of good controller design to not select the
high controller gains as the noise will be ampli�ed by the high gains of the
controller. For these gain selections, the maximum bandwidth ω1 of the
state-space controller of the two-mass resonant system is 73 rad/sec with 5%
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Table 4.1: Parameters of dominant and resonant pole pairs.

Parameter Dominant pole pair Resonant pole pair
ζ1 1 -
ζ2 - 0.2
ω1 73 -
ω2 - 87.5

overshoot in the response. The gains for the state-space controller can be
calculated by (3.18), (3.19), (3.20) and (3.21), considering the parameters of
the dominant and the resonant pole pairs and the parameters of the system
in Table 2.1.

2DOF controller's gains according to rigid system model

The gain calculation of the 2DOFRSM controller depends on the bandwidth
αs and the damping coe�cient ζ of the system whereas the bandwidth of the
controller should be less than the anti-resonance frequency of the system.
Several simulations have been carried out for the di�erent values of αs and
ζ to analyze the behavior of the control system. The system response is well
damped and within the required limits of 5% overshoot if the parameters are
selected as

αs = 19 rad/sec (4.4)

ζ = 1. (4.5)

For these selections, the gains KP , KI of the controller can be calculated
according to (3.35) and (3.36). The low-pass �lter can be designed according
to (3.43).

2DOF controller's gains according to �exible system model

The parameter selection of the 2DOFFSM controller depends on the natural
angular frequencies and the damping coe�cients. The bandwidth of the
system is determined by min(ω1, ω2). The bandwidth should be less than the
anti-resonance frequency of the system. The natural frequencies ω1 and ω2
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Table 4.2: Gain values of the designed controllers for aggressive design.

Gains
Speed controller type

2DOFRSM 2DOFFSM SS

KP 0.76 0.75 −
KI 3.64 6.07 215.42
Kf 4.75 − −
k1 − − 0.74
k2 − − 35.88
k3 − − 6.50

Bandwidth 19 11.76 73

are dependent on the damping coe�cients of the system and these can be
calculated by (3.64) and (3.65).

Using di�erent damping coe�cient values, several simulations for the control
system have been performed to analyze the behavior of the system. The
system response is well damped and within the required limits if we choose
the values of damping coe�cients as

ζ1 = ζ2 = 1. (4.6)

By this selection of damping coe�cients, the values of ω1 and ω2 are given
as

ω1 = 11.76 rad/sec (4.7)

ω2 = 70.80 rad/sec. (4.8)

The gains KP , KI of the 2DOF controller, according to �exible system model
tuning, can be calculated by (3.57), and (3.58). The bandwidth of the sys-
tem is determined by min(ω1, ω2) so ω1 is the maximum bandwidth of the
system with 5% overshoot criteria. From the design rules and the parameter
selections, the gain values of the three designed controllers are calculated and
presented in Table 4.2.
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Table 4.3: Gain values of the designed controllers for the equivalent rise time
selection.

Gains
Speed controller type

2DOFRSM 2DOFFSM SS

KP 0.25 0.73 −
KI 0.38 3.67 4.98
Kf 1.54 − −
k1 − − 0.19
k2 − − 2.69
k3 − − 0.73

Bandwidth 6.15 11.76 11.1

4.2.2 Equivalent rise time for the controllers

In order to compare the rise time of all three controllers, the rise time is
de�ned as "time taken for the output to rise from 0% to 90% of its �nal
value when stimulated by a step input".

A number of simulations are done by changing the values of the bandwidth
for the state-space controller and the 2DOFRSM controller to obtain the
equal rise time for all the controllers. The equivalent rise time is obtained
if the bandwidth of the state-space controller is selected 11.1 rad/sec and
the bandwidth of the 2DOFRSM controller is selected 6.15 rad/sec. The
remaining parameters of the controllers are selected similarly as in previous
simulation. The equivalent rise time for all the controllers is 0.361 seconds.
The gain values of the three designed controllers are calculated and presented
in Table 4.3 for the equivalent rise time selection.

4.2.3 Equivalent load torque rejection for the controllers

The parameters of the 2DOFFSM controller are adjusted similarly. The pa-
rameters of the state-space controller and the 2DOFRSM controller will be
selected to get the same load torque rejection according to the 2DOFFSM
controller.

Varying the di�erent values of bandwidth of the controllers, several simula-
tions are carried out to acquire the same load torque rejection. For the state-
space controller, the damping coe�cient value is also adjusted in addition to
the bandwidth of the controller. All controllers have almost the same load
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Table 4.4: Gain values of the designed controllers for the equivalent load
torque rejection.

Gains
Speed controller type

2DOFRSM 2DOFFSM SS

KP 0.75 0.75 −
KI 3.65 3.65 3.27
Kf 4.75 − −
k1 − − 0.16
k2 − − 0.44
k3 − − 1.76

Bandwidth 19 11.76 9

torque rejection if the bandwidth of the 2DOFRSM controller is chosen 19
rad/sec and the bandwidth of the state-space controller is selected 9 rad/sec
with the damping coe�cient value of the dominant pole pair chosen as 0.8.
The remaining parameters of the controllers are selected similarly as in the
previous simulation. The gain values of the three designed controllers are
calculated and presented in Table 4.4 for the equivalent load torque rejection
for the controllers.

4.3 Simulation results

The simulations are performed for the state-space controller, the 2DOFRSM
controller and the 2DOFFSM controller using the gain values discussed in
the previous subsections. In these simulations, the actual speed signals are
shown.

4.3.1 E�ect of encoder model

In the simulation models of the controllers, an incremental encoder is modeled
and added in the closed-loop system. The purpose of the encoder is to add
the noise e�ect in the system response. The comparison in the responses of
the speed control system for the 2DOFFSM controller is shown in Fig. 4.3
with noise and without noise due to the encoder model.
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4.3.2 Aggressive design simulation

The gains of the all three controller are selected according to Table 4.2. The
step response of the speed control system for each controller is shown in Fig.
4.4. This simulation is done for 5% overshoot criteria. In this case, our
interest is to analyze the capability of the controllers to follow the reference
signal e�ciently. It is clearly visible from the simulation result that the state-
space controller is fast as well as has the best load torque rejection among
all the three controllers but there are some transients in the response of
the system. The reason for these transients is that we are operating near the
resonance area. The response of the 2DOFRSM controller is fast as compared
to the response of the 2DOFFSM controller.

The load torque rejection is a little faster in the case of the 2DOF controller
tuned according to the �exible system model as compared to the rigid sys-
tem model tuning but it also has some overshoot after the recovery in the
response. In case of rigid system model tuning, the load torque is slightly
slower but it is well damped. In the motor torque TM , maximum noise and
maximum peak value of the torque is observed for the state-space controller.
The reason for this noise is the fast response of the state-space controller.
The 2DOFFSM controller and the 2DOFRSM controller have almost the same
amount of noise but the latter has a high peak in the motor torque.

In the aggressive design simulation, the 2DOFRSM controller han an edge of
being fast in reference following as compared to the 2DOFFSM controller.
Both controllers have almost similar load torque rejection but the 2DOFRSM
controller has a high peak in the motor torque TM .

4.3.3 Equivalent rise time simulation

The controller gains are selected as per Table 4.3. The step response of all
three controllers is shown in Fig. 4.5. In this simulation, the rise time for all
three control designs is �xed.

For equivalent rise time selection, no overshoot is observed in all three con-
trollers. The noise in the motor torque is lowest for the 2DOFRSM controller
but it has very poor load torque rejection. The lowest noise is due to the
small gain values of the controller. It also has the maximum peak in the mo-
tor torque TM . On the other hand, the 2DOFFSM controller has relatively
high noise but the load torque rejection is good. The state-space controller
has the highest noise of all three controller but it has the best load torque
rejection.
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In the equivalent rise time simulation, the 2DOFFSM controller has signif-
icantly better results as compared to the 2DOFRSM controller. There is a
signi�cant di�erence in the load torque rejection of both tuning techniques.
In this case, one can easily conclude to prefer the 2DOFFSM controller over
the 2DOFRSM controller.

4.3.4 Equivalent load torque rejection simulation

In order to get the equivalent load torque rejection for all the controllers,
the gains are selected according to Table 4.4. The step response of all three
controllers is shown in Fig. 4.6. It can clearly be observed from the simu-
lation results that there is 4.4% overshoot in the response of the 2DOFRSM
controller and 1.2% overshoot in the response of the state-space controller
for the same load torque rejection but there is no overshoot in the 2DOFRSM
controller response. The rise time of the 2DOFRSM controller is the best of
all the controllers but it has the maximum peak in the motor torque TM .
The noise is almost the same in response of all controllers.

In the equivalent load torque rejection (Tlr) simulation, the 2DOFFSM con-
troller shows better performance than the 2DOFRSM controller. There is no
overshoot in response as well as a low peak is observed in the motor torque
for the 2DOFFSM controller.
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Figure 4.3: The e�ect of the encoder model.



www.manaraa.com

CHAPTER 4. GAIN CALCULATIONS AND SIMULATIONS 49

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

30

40

50

60

Time (s)

 v
e

lo
c
it
y
 (

ra
d

/s
e

c
) 

Step response for agressive design 

 

 

Reference
SS controller
2DOFRSM controller

2DOFFSM controller

5% Over shoot

0 0.5 1 1.5 2 2.5 3
-30

-20

-10

0

10

20

30

40

50

60

Time (s)

 M
o

to
r 

to
rq

u
e

 (
N

m
) 

 

 
SS controller
2DOFRSM controller

2DOFFSM controller

Figure 4.4: The step responses of the speed control system for the aggressive
design.
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Figure 4.5: The steps response of the speed control system for equivalent rise
time.



www.manaraa.com

CHAPTER 4. GAIN CALCULATIONS AND SIMULATIONS 51

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

30

40

50

60

Time (s)

 v
e

lo
c
it
y
 (

ra
d

/s
e

c
) 

Step response for equivalent load torque rejection 

 

 

Reference
SS controller
2DOFRSM controller

2DOFFSM controller

0 0.5 1 1.5 2 2.5 3
-5

0

5

10

15

20

25

30

35

40

Time (s)

 M
o

to
r 

to
rq

u
e

 (
N

m
) 

 

 
SS controller
2DOFRSM controller

2DOFFSM controller

Figure 4.6: The steps response of the speed control system for equivalent
load torque rejection.
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Table 4.5: Measured control performances.
Performance Controller Agressive Equivalent Equivalent

parameters design rise time Tlr

Tr (sec)
SS 0.044 0.361 0.337

2DOFRSM 0.097 0.361 0.097
2DOFFSM 0.214 0.361 0.360

PO (%)
SS 5 − 1.2

2DOFRSM 5 − 4.4
2DOFFSM 5 − −

Tlr

SS best best Good
2DOFRSM Good Poor Good
2DOFFSM Good Good Good

4.4 Performance comparison

The simulation results are presented in Fig. 4.4, Fig. 4.5 and Fig. 4.6. The
achieved control performances are characterized by the percentage overshoot
(PO) in the response of the controllers, the rise time (Tr) and the load torque
rejection (Tlr) of the controllers. The values of these performance parameters
are summarized in Table 4.5 for each speed controller. The load torque
rejection (Tlr) is characterized as best, good and poor considering best as the
excellent and poor as the worst.
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Conclusions

The objective of this Master's thesis was to compare three speed controlling
techniques for the two-mass resonant system: the state-space control, the
2DOF control tuned according to a rigid system model and the 2DOF con-
trol tuned according to a �exible system model. The control methods were
designed and compared in terms of their dynamic behavior, reference follow-
ing capability and load torque rejection. Furthermore, the e�ect of noise in
the motor torque due to the encoder was also taken into account for each
controlling technique.

The state-space controller is designed using the pole placement technique and
analytical calculations are presented for the gains calculation. The feedfor-
ward type of 2DOF controller is �rst tuned considering the two-mass resonant
system as a rigid system and then it is tuned according to a �exible system
model. Analytical gain calculations for both tuning techniques are presented.
Finally, three simulation studies are used to compare the performance of the
designed speed controllers: the aggressive design simulation, the equivalent
rise time simulation and the equivalent load torque rejection simulation.

It is observed that the best control performance can be achieved by the state-
space controller due to its free pole placement property but it is required
that all state variables should be available. Usually all state variables are
not available and this condition will limit the performance of the state-space
controller.

In the aggressive design simulation, the 2DOFRSM controller has a faster
reference following than the 2DOFFSM controller for almost the same load
torque rejection. It can be concluded that for the system where the fast
rise time is required, the 2DOFRSM controller will be preferred over the
2DOFFSM controller but it is to be noted that there is a peak in the motor
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torque for the 2DOFRSM controller.

In the equivalent rise time simulation, the 2DOFFSM controller had de�-
nitely better load torque rejection. The 2DOFRSM controller has poor load
torque rejection. Both tuning techniques have almost the same peak in mo-
tor torque but the �exible system model tuning has much more noise than
the rigid system tuning. In this case the 2DOFFSM controller shows better
performances.

In the equivalent load torque rejection simulation, there is overshoot in the
response of the 2DOFRSM controller as well as a high peak in the motor
torque but no overshoot is observed in the 2DOFFSM controller's response.
Hence, in this comparison, the 2DOFFSM controller has a clear edge over
the 2DOFRSM controller.

The comparison of all three controllers with pros and cons is presented and
the user has to decide, depending on the required control performance and the
available control hardware, which of the control method is the most conve-
nient one for their system. If future investigations in the area of the two-mass
resonant system speed control are conducted, the study should concentrate
on what the e�ect of state observers is on the state-space controller perfor-
mance. For all controller tuning techniques, the robustness of the controllers
to parameter variation can be analyzed. Further, it would be interesting to
study the dynamical reference tracking capability of the controllers.
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